Transcript from Richard Reid Sentencing: Judge William Young

Judge William Young’s Closing Comments To Shoe Bomber Richard Reid. Great words of courage and love of Liberty.

US District Court Judge William Young made the following statement in sentencing “shoe bomber” Richard Reid to prison. It is noteworthy, and deserves to be remembered far longer than he predicts. I commend it to you and to anyone you might wish to forward it to.

January 30, 2003, United States vs. Reid. Judge Young: Mr. Richard C. Reid, hearken now to the sentence the Court imposes upon you.

On counts 1, 5 and 6 the Court sentences you to life in prison in the custody of the United States Attorney General. On counts 2, 3, 4 and 7, the Court sentences you to 20 years in prison on each count, the sentence on each count to run consecutive with the other. That’s 80 years. On count 8 the Court sentences you to the mandatory 30 years consecutive to the 80 years just imposed. The Court imposes upon you each of the eight counts a fine of $250,000 for the aggregate fine of $2 million.

The Court accepts the government’s recommendation with respect to restitution and orders restitution in the amount of $298.17 to Andre Bousquet and $5,784 to American Airlines. The Court imposes upon you the $800 special assessment.

The Court imposes upon you five years supervised release simply because the law requires it. But the life sentences are real life sentences so I need go no further.

This is the sentence that is provided for by our statutes. It is a fair and just sentence. It is a righteous sentence. Let me explain this to you. We are not afraid of any of your terrorist co-conspirators,

Mr. Reid. We are Americans. We have been through the fire before. There is all too much war talk here. And I say that to everyone with the utmost respect. Here in this court, where we deal with individuals as individuals, and care for individuals as individuals, as human beings we reach out for justice, you are not an enemy combatant. You are a terrorist. You are not a soldier in any war. You are a terrorist. To give you that reference, to call you a soldier gives you far too much stature. Whether it is the officers of government who do it or your attorney who does it, or that happens to be your view, you are a terrorist. And we do not negotiate with terrorists. We do not sign documents with terrorists. We hunt them down one by one and bring them to justice.

So war talk is way out of line in this court. You are a big fellow. But you are not that big. You’re no warrior. I know warriors. You are a terrorist.

A species of criminal guilty of multiple attempted murders. In a very real sense Trooper Santiago had it right when you first were taken off that plane and into custody and you wondered where the press and where the TV crews were and he said you’re no big deal. You’re no big deal.

What your counsel, what your able counsel and what the equally able United States attorneys have grappled with and what I have as honestly as I know how tried to grapple with, is why you did something so horrific. What was it that led you here to this courtroom today? I have listened respectfully to what you have to say. And I ask you to search your heart and ask yourself what sort of unfathomable hate led you to do what you are guilty and admit you are guilty of doing. And I have an answer for you. It may not satisfy you. But as I search this entire record it comes as close to understanding as I know. It seems to me you hate the one thing that is most precious. You hate our freedom. Our individual freedom. Our individual freedom to live as we choose, to come and go as we choose, and to believe or not believe as we individually choose.

Here, in this society, the very winds carry freedom. They carry it everywhere from sea to shining sea. It is because we prize individual freedom so much that you are here in this beautiful courtroom. So that everyone can see, truly see that justice is administered fairly, individually, and discretely. It is for freedom’s sake that your lawyers are striving so vigorously on your behalf and have filed appeals, will go on in their, their representation of you before other judges. We are about it. Because we all know that the way we treat you, Mr. Reid, is the measure of our own liberties. Make no mistake though. It is yet true that we will bear any burden, pay any price, to preserve our freedoms.

Look around this courtroom. Mark it well. The world is not going to long remember what you or I say here. Day after tomorrow it will be forgotten. But this, however, will long endure. Here in this courtroom and courtrooms all across America, the American people will gather to see that justice, individual justice, justice, not war, individual justice is in fact being done.

The very President of the United States through his officers will have to come into courtrooms and lay out evidence on which specific matters can be judged, and juries of citizens will gather to sit and judge that evidence democratically, to mold and shape and refine our sense of justice.

See that flag Mr. Reid? That’s the flag of the United States of America. That flag will fly there long after this is all forgotten. That flag stands for freedom. You know it always will.

Custody Mr. Officer. Stand him down.

Share

Balancing Severely Out of Balance A123 Pack

The following is a recent exchange discussing some charging logic that is impacted often by time-out settings in chargers. Not a bad thing all in all. The same logic can be applied to Lipo packs as well.

Hi, Dave:
Here’s my situation: All of my A123 batteries came from you and I’ve got several. All of them (except 1) work perfectly and I enjoy being able to take advantage of all that A123 batteries have to offer. My one that doesn’t work properly is a 2300mah, 2S receiver battery that I can’t get to balance. I charge it on a Turnigy Accucell-6 with the cutoff voltage set at 7.2 volts. My charger timed out at 120 minutes with one cell at 3.6 volts and the other at 3.25 volts. When I first started using these batteries, I was negligent about balance charging and would as often as not, just quick charge them and go fly. So, this is not a warranty question at all, but one as much for my knowledge as anything. First of all, is this battery safe to use (as a receiver battery), and second, is there anyway to get the second cell back up to voltage? I’ve cycled and balance charged it probably 3 times trying to get it to respond, but nothing I know to do has worked. I guess I could used it on an electronic ignition where sudden failure wouldn’t likely be as catastrophic as losing receiver power. What is your recommendation?
Thanks,
Steve

When balance charging, the first cell getting up to 3.6V causes the charger to start stepping down the charge rate. Ultimately, the charger cannot go over the maximum dissipation rate of your balancer. In other words, if it can only dissipate 100 mah, then the charger will drop back to 100 mah. It’s charging the pack at 100 mah but at the same time discharging the full cell at 100 mah to keep it from going over 3.6v. If the low cell is 1000 mah behind, in the two hours of the time out, it will only be able to bring the lagging cell up about 200 mah. It will still be lagging by 800 mah and some measurable voltage difference will be the evidence. Because the charger times out and stops working, your still out of balance.

Procedure options:

A. You could just keep repeating a 100 mah charge rate and let it time out 4 or 5 times.

B. You could also go into the setup and disable the time out.

C. There are some safety concerns with both “A” and “B” above. The best and quickest method that we use at our shop is to connect the charger through the balance port to only the low cell. You can do this through the standard XH balance connector by taking a JR or Futaba RX charge cord, crack off the outer shroud exposing the two pins. These two pins will be .100″ apart, just like those in the balance harness. Plug the bullet end of the cord into a volt meter, plug the business end into the balance harness, probing the different combinations. In the case of a 2 cell RX pack, you’ll only find 2 combinations. Offset to the black wire and offset to the red wire. One of these will read about 3.6v (the full cell) the other will read 3.25v (in your example, it’s the low cell). When you find the low voltage position, carefully pull the banana plugs out of your volt meter and plug into your charger. Set the charger to charge 1 LIFE cell. Set the rate (for a 2300 A123) to something between 1 and 2 amps (we don’t want to overheat the delicate balance connector) and let it charge that individual cell through the balance harness until it’s full.

When it’s done, both cells should be at similar voltage.

If you want to get really fine, there could be a slight calibration difference between your charger charging a single and a two cell pack. To really refine it, reconnect the pack to the charger as a 2 cell pack in the conventional way. Put the charger in discharge mode set at 2 amps. Let it take our 100 mah or so out of the pack. Then, switch back to Balance Charge mode and charge at 2 amps. Now the charger will put the 100 mah or so back in and at the same time balance both cells to each other. Since the pack is almost full, it won’t actually charge at 2 amps, it will read something lower. When complete, if the cells are good and the charger is working properly both cells should be very close.

It is possible the cell is bad. If this is the case, the above procedures and logic won’t result in a balanced pack. (presuming the charger is working correctly) It’s OK to repeat the procedure if you want to try again however, it’s likely your results will be the same.

If you are able to balance it successfully, do a discharge on the pack at capacity/2 or near. This is the standard for testing lithium type cells. So, a discharge rate of about 1.1 amps would be correct. Realistically the A123 2300’s should test within 50 mah of 2200 if they are in perfect condition. If the pack tests below 80% of 2200 (below 1760 mah) it should be replaced.

As to safety, I hesitate to ever say any battery is “safe”. I would say that if I could not get the pack behaving properly, I’d replace it. The cost of any pack is always a tiny fraction of the value of a model. It never makes you feel like a winner to put one in the dirt over saving a few bucks on a simple part, especially if you were suspect of it before you flew. Get it right, get confident or replace it.

Another safety warning here is you should be extra diligent when working with any battery where it’s condition is suspect. Do it outside and/or supervise closely. Never charge unattended inside a structure or vehicle. Always use a fireproof container for charging, especially when dealing with anything suspect.

If you follow through those procedures and that logic, you should be able to rule the pack in or out and have good confidence in your decision. Hope this helps you sleuth out the pack. Dave

Share

Converting A Model From Lipo to A123 (LIFE) Cells

Chris from Michigan Asks;

Hello Dave,
I would like to power my Ryan with A123 cells. I have been using a 9s 4p 6000mah Lipo pack to power a Hacker C50 motor.
If I understand things correctly, I believe that I need 4packs 6s 2300mah to equal the same watts and flight duration as the Thunder Power packs that I have been running.
Because of the cost of these A123’s, I want to be sure that what I am ordering is correct!

Chris,

To match duration of a 6000mah Lipo, you’ll need at least 6000mah in A123 which will be 3P. You’ll actually be a little over as the 2300mah A123 cells actually test most of the time around 2200, at 3P you’ll have 6600mah which should result in slightly more flying time.

I assume your 6000mah lipo is made up of 1500mah Parallel packs. So, 4 1500’s in parallel = 6000mah.

If what you really meant was your running 6000mah cells, 4 in parallel, then your pack size is 24000mah which would be about 11P or 11 A123 in parallel. I am not thinking you meant you had a 24000mah pack.

If your running 6000mah total in the airplane, and are thinking of running A123 in 2P for about 4400mah real world, this may be just fine. I generally only use the top 60% of a Lipo (70% max) on a routine basis. 60% of 6000 3600mah, 70% is 4200mah. I’m more comfortable running A123 cells a little deeper than Lipo’s as the risk of hitting BEC cut off cause me less worry. (Hitting BEC cut off is hard on Lipo’s) So, running a 4400 A123 down 80% is 3200mah. So, a 2P A123 should get close to the Lipo in actual use. However, your not running as much cushion between a solid end of flight habit and the bottom of the battery.

For matching running voltage, you’ll need 10 to 11S A123. I’d probably go to 11. At 12S, you’ll definitely have 3-4 more running volts. It will be like 9.8 Lipo or something like that.

To do conversion at nominal voltage, (# Lipos * 3.7) / 3.3 nominal of A123 = cell count.
To do conversion at full voltage: (# Lipos * 4.2) / 3.6 full voltage of A123 = cell count.

Nominal conversion is: 9 Lipo = 10.09 A123 cells

Full voltage Conversion is: 9 Lipo = 10.5 A123 cells.

Since you do most of your flying between full and nominal voltage I lean towards the full number for this estimation. 11 is the best choice. 10 you might notice a slight decrease in performance by your motors KV * volt reduction of the 10S pack. Right in the front of the pack, the 9S Lipo is 37.8v. Right in the front of a 10S A123 your full voltage will be 36v. So, KV X 1.8 = drop in top rpm. If your running a 500kv motor, that’s 900 rpm.

If you go with 11 cells, you’ll be starting out at 40.4v meaning your over the Lipo voltage by about 2.6v. So, you pick up (with 500kv motor) 1300 prop rpm.

Either choice means to get back to exact performance you had on Lipo you may need to alter the prop slightly, maybe an inch more pitch for the 10S A123 and an Inch less pitch for the 11S A123 or something similar to re balance things back out.

So, on balance, not knowing everything about the model and power system, I’d lean towards 11S. If you go 12S as your proposing, you’ll likely end up way over on RPM and Watts from where you were with the 9S Lipo pack. Important considerations here are if you mind a little more or a little less power (if the ESC minds more amps/voltage) and if you would need to change props, is there a convenient prop up or down that would suit the model and flying preferences. For example, if your running right at the edge of the ESC at this time and didn’t want to upgrade it, a slight decrease in power is acceptable, 10S becomes the obvious choice.

Another consideration not taken into account above is there can be a wide variation in quality of Lipo’s people are using out there. (not picking on Thunder Power, remarks for general readers of this post) Your current pack which may be performing just fine for the application may be worn and not really up to snuff compared to the original new condition. Thus if the current lipo has more voltage depression than it should, an A123 10S pack depressing less by some significant amount, could end up taching and watt metering out higher than the battery you are now using.

Share

Checking A123 RX Packs For Recharge Point

Radical RC A123 2300 2S RX Pack Example
Radical RC A123 2300 2S RX Pack Example

A123 RX Packs can be tricky to deturming how much is left in the pack by checking voltage alone. Variations in connectors and length of wire can have a big impact on actual volt readings when loaded. Using an RRC1000 digital voltmeter with load capability of 0.0A, .5A, 1A and 1.5A we get the following results measuring a 2300 2S RX pack with 6″ 20 g silicone JR pigtail and the included 22 guage battery checker pigail with the meter. Note: the meter (which ever you are using) is reading the voltage on it’s board, not at the pack. The voltage at the pack will actually be higher by the voltage drop across your checkers connector, pigtail, checker/pack connector and the pigtail on the pack. Here are the results we measured at varous loads. Room temperature was 74 degrees F, each load held aproximately 5 seconds before reading taken.

RRC1001 Voltmeter Image
RRC1001 Voltmeter Image
State Of Charge No Load Resting Voltage .5 Amp Load 1.0 Amp Load 1.5 Amp Load
40% 6.58v 6.37v 6.18v 6.09v
30% 6.52v 6.38v 6.17v 6.06v
20% 6.45v 6.32v 6.19v 6.08v
10% 6.38v 6.25v 6.14v 6.04v
0% 5.43v 5.19v 5.08v 4.98v

As can be seen from the data above, at some loads, the pack actually increased slightly in voltage as we went down even though the overall trend was lower in voltage. Note this test was not over a multitude of packs which would be more accurate and likely nuetralize the unexpected results mentioned.

Notice how little the pack is falling off in voltage and that the biggest consistant drop is in the resting voltage column, not a result I expected.

Notice the results at 0% capacity remaining as measured by my charger/discharger. As it is important to understand the context of the data and how I was checking the voltages, it is also important to understand the context of the data and how I was discharging the pack in 10% steps until empty (more explanined below) All discharges to make this chart after the initial 60% discharge were at 1.1A and in 230mah steps. The discharge harness was made from 22guage wire, 24″ long and plugged only into the JR output lead on the pack. Even though after 5 seconds of holding the load, I got the voltages above on the 0% line, putting the pack back on the discharger and trying to discahrge it some more resulted in the pack falling off to the 4V cut off (the empty point) in only about 10 to 15 seconds. Yet, I was still able to measure almost 1.5 higher than that when the pack had come off the first discharge to empty and been allowed to set for only 10 minutes before I measured anything. We can see that a wide range of voltages over 5 to 15 seconds with differing loads were all the same thing – EMPTY! Pay attention to the context of everything or you’ll get fooled! Because the context of how you are checking the voltage has such an impact on the reading, you should check your packs the same way every time with religious zeal.

A123 Systems cells ability to hold a strong voltage under load all the way until they are empty is one of the primary reasons they are so popular as RX packs, yet it is the very reason they are somewhat more challenging to voltmeter check from flight to flight.

To devise your own chart, cycle the pack to deturmine it’s actual value (ours was 2250), recharge, then set your chargers limiter to 60% of the actual value (ours was set to 1350) and discharge at capacity/2 (we used 1.1amp for our pack). After you’ve discharged it to this point, take the reading with the equipment and through the switches or whatever you have installed in your ship. Now you will know the readings at the 60% discharged (40% remaining) point. This is where you should be recharging any mission critical pack such as a TX or RX pack. To arrive at another row of data aproximately 10% further down in the pack, we simply set the limiter to 230mah and repeated the discharge. Repeat for each line of data you’d like to collect. You could start from full and discharge in 230mah steps generating data for 100%,90%,80% & etc….. Science, don’t you love it!

It would be my advice to think about making your own chart so you can learn something and become firmiliar with the voltage drop across all the gear in your model. You’ll be measuring the pack across a switch harness in most cases which will give you lower voltage readings than these.

General practice should be to taxi the model back to the pits, and before you’ve turned it off, plug your loaded volt meter in, turn off the model and take your reading immeadiately. Note your own chart for the correct cut off voltage and always recharge at the 40% remaining point. Flying below 40% is dipping into your reserves and should be avoided for any mission critical pack.

Share

Do A123 LIFE Packs Free Us From Cycling?

Dave
One more quick question. I ordered some 1100 2s A123 packs from you today.
Do these need to be cycled? I have a FMA 4S CellPro charger that is A123 compatible. It will charge and balance, but not cycle.
Thanks again.
IRL

 

Irl,

If you want to check them before flying, Yes.
If you want to find out when they go bad on the workbench rather than at the field, yes.

There is no skipping regular battery testing and maintenance regardless of battery chemistry. All battery types will fail eventually and discharge testing is the only chance to discover packs needing replacement before having an accident.

My answer might seem a bit strange, however, every time there is a new battery chemistry many modelers think the new “miracle chemistry” means the end of regular battery maintenance and testing. I got the question many times at the beginning of the NiMH revolution, the Lipo revolution and at the introduction of A123 Systems LIFE cells. There could be nothing further from the truth. There is never a time when battery maintenance and testing is not prudent.

No jab against the CellPro chargers is intended here. They are very good quality and I recommend them. I don’t know the specifications of all the models they sell but am aware some of them will discharge test packs. It is possible to discharge these in NiCad or NiMH mode on modern digital chargers as long as the mode has NO CHARGE at the end of discharge. In other words, as long as it’s not a “cycler”. A cycle is a full discharge then charge or full charge then discharge. To do this, we want to us a charger that simply does 1/2 the cycle, in other words we want it to discharge and that is all. Just set the (NiMH or NiCad) cell count to 4 for a 2 cell A123. Some let you set the cut off voltage directly and in that case, set it to 2v per cell or 4V for a 2cell A123 pack. The correct discharge rate for any kind of lithium is Capacity/2. They are rated over 2 hours. Since many chargers/dischargers only allow discharge rates at even .1 amp (100mah) increments, set discharge to 500 or 600mah (.5 or .6 amps) to do a reasonably accurate job on an 1100mah rated cell.

I’ve noticed over the years the 2300mah cell (26650 can size) generally cycles to 2100-2200 range. They seem slightly over rated. Don’t be alarmed if your 1100mah (18650 can size) pack tests to 1000 or 1050mah. It’s probably just about right.

Happy Flying
Dave,

Share

Battery Storage In Reverse

For many of us there is a winter storage season. How do we bring our fuel powered models out of storage confident our RX battery packs are up to snuff? Were they nearing the end of life at the end of last seasons flying? Did they survive being in the trailer or garage ceiling for a number of months? Here are important steps to greatly reduce your risk of shouting “I Ain’t Got It!” when you hit the field this spring. These recommendations are intended for NiMH and NiCad packs although the similar principals apply to any mission critical TX or RX pack regardless of chemistry.

1. You should have cycled your packs and noted the value on them when you put the model in storage. Did you do this? A simple round of cycling in the fall will help weed the weakest packs from the herd.

2. Check the purchase date on your pack prior to model reactivation. Did you date your packs? Noting the purchase date in permanent marker should be a routine with new packs. Has this pack made it 3 seasons already? If it has made it 3 seasons, it’s time to replace it with a fresh one even if it’s still cycling well. It never seems like a good deal to “squeeze one more season” out of a pack if a model is lost doing so. There are no battery experts in the industry, nor any magazine writers that are willing to dare recommending using packs beyond 3 years. Most recommend only 2 years. The incident of surprise failures increases with each season. It’s much cheaper “not” to find out how long it will take to have a failure. Think about it.

3. Similar to a new pack, a pack having been in storage for some time is in need of a slow “forming charge.” A forming charge is a simple full-to-overflowing charge on a non-peak detecting charger like your factory wall wart. While in storage the cells slowly discharge. Not every cell will discharge at the same speed. After a few months, you could have one cell at 80%, one at 60% and two at 50%. When form charging, It’s important the charge rate does not exceed 10% of the packs mili-amp-hour (mah) value when doing this procedure. This type of charge allows all the cells to fill fully and the first cells to fill won’t be overheated by the ongoing charge. The danger of peak charging a pack that has been in storage is the best cell (the 80% full one) can be ruined as it’s overcharged while the other 3 are still filling up. Also, your pack may false peak meaning that although the charger reports it is full, it really might not be. Re-equalize the cells with a good long slow wall charger charge prior to any peak charging to avoid most problems.

4. Test for Capacity. Discharge the pack on your favorite charger (with discharge function). For the purposes of this kind of test, the correct rate to test against factory rating is 20% or 1/5 of the rated capacity. It’s ok if you can’t get that setting exactly, just get it close. Example: A 1000mah pack would be tested at 200mah discharge. Most chargers will display this as .2A. Your pack should test at least 80% of it’s rated capacity. If it does not, then a few more charge / discharge cycles are in order. If you can’t get the pack to test above 80%, it’s time to replace it. Although it might seem like a money saver to succumb to temptation and overlook marginal packs, one crashed model will pay for a great many replacement battery packs. And that’s to say nothing of the risk to others when a model goes out of control. Good pack or no go!

5. When you recharge the pack after your final discharge test, check the charger input mah. Did it put in about the right amount? A pack that’s been in storage, particularly if you’ve skipped the step of re-forming it is very prone to a false peak. A great pack that tests perfect but only takes 50% of the expected recharge amount could cause some unwelcome excitement.

6. Test your Switch. First, use a loaded tester to check your fully charged pack directly. Note the value then test it through the switch harness. If it tests good directly but marginal through the switch, it might be a sign the switch is getting dirty internally, worn or perhaps some connectors are going south. Like battery packs, finding out how long a switch will last is costly knowledge to acquire. It’s a good idea to replace the switch with every other new battery just to avoid trouble. Load testing your pack with and without the switch harness looking for any substantial difference is a good way to detect a problem before starting the season. Did you notice what I omitted? After checking the battery through your switches charge lead or charge jack, unplug it from the RX, turn the switch to the “ON” position and check it again. Is it load testing similar to the charge jack/charge pigtail? The most important place for your pack to deliver it’s energy is to the RX. Make sure it’s solid to this point, not just the charge harness.

Integrate these practices into your seasonal routines and many common pitfalls are avoided. Don’t forget to scrutinize your TX battery in similar fashion. Ongoing TX function is every bit as important as RX functionality.

Dave Thacker, Owner: RadicalRC.com
Blogsite: Radical RC Workbench

Share